Lie algebra so(9), type \(B^{1}_4\)
Semisimple complex Lie subalgebras

so(9), type \(B^{1}_4\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.
Up to linear equivalence, there are total 48 semisimple subalgebras (including the full subalgebra). The subalgebras are ordered by rank, Dynkin indices of simple constituents and dimensions of simple constituents.
The upper index indicates the Dynkin index, the lower index indicates the rank of the subalgebra. Generation comments.
Computation time in seconds: 616.475.
263606775 total arithmetic operations performed = 257074564 additions and 6532211 multiplications.
The base field over which the subalgebras were realized is: \(\displaystyle \mathbb Q\)
Number of root subalgebras other than the Cartan and full subalgebra: 18
Number of sl(2)'s: 12
Subalgebra \(A^{1}_1\) ↪ \(B^{1}_4\)
1 out of 48
Subalgebra type: \(\displaystyle A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: \(\displaystyle B^{1}_2+A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_1\)
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 2A^{1}_1\) , \(\displaystyle 2A^{1}_1\) , \(\displaystyle A^{2}_1+A^{1}_1\) , \(\displaystyle A^{2}_1+A^{1}_1\) , \(\displaystyle A^{3}_1+A^{1}_1\) , \(\displaystyle A^{10}_1+A^{1}_1\) , \(\displaystyle A^{11}_1+A^{1}_1\) , \(\displaystyle 3A^{1}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle A^{10}_1+2A^{1}_1\) , \(\displaystyle B^{1}_2+A^{1}_1\) , \(\displaystyle 4A^{1}_1\) , \(\displaystyle B^{1}_2+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (1, 2, 2, 2): 2
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-16}\)
Positive simple generators: \(\displaystyle g_{16}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}}\oplus 10V_{\omega_{1}}\oplus 13V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{4\psi_{1}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+2\psi_{1}}
\oplus V_{\omega_{1}+2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus V_{2\psi_{3}}\oplus V_{2\psi_{2}}\oplus V_{2\omega_{1}}\oplus V_{4\psi_{2}-2\psi_{3}}
\oplus V_{\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{2}+2\psi_{3}}\oplus 3V_{0}\oplus V_{2\psi_{2}-2\psi_{3}}
\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{1}+2\psi_{2}-2\psi_{3}}
\oplus V_{-4\psi_{2}+2\psi_{3}}\oplus V_{-2\psi_{2}}\oplus V_{-2\psi_{3}}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{1}}\)
Made total 278 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1\) ↪ \(B^{1}_4\)
2 out of 48
Subalgebra type: \(\displaystyle A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: \(\displaystyle A^{1}_3\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{2}_1\)
Basis of Cartan of centralizer: 3 vectors: (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_1+A^{1}_1\) , \(\displaystyle 2A^{2}_1\) , \(\displaystyle A^{4}_1+A^{2}_1\) , \(\displaystyle A^{10}_1+A^{2}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle 3A^{2}_1\) , \(\displaystyle A^{1}_2+A^{2}_1\) , \(\displaystyle B^{1}_2+A^{2}_1\) , \(\displaystyle A^{1}_3+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 2, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-11}\)
Positive simple generators: \(\displaystyle g_{11}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 7V_{2\omega_{1}}\oplus 15V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+2\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{2\omega_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{2}}
\oplus V_{2\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}-2\psi_{2}}
\oplus V_{2\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus V_{2\omega_{1}+2\psi_{2}-2\psi_{3}}\oplus V_{-2\psi_{1}+2\psi_{3}}\oplus V_{2\psi_{1}-4\psi_{2}+2\psi_{3}}
\oplus 3V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{-2\psi_{1}+4\psi_{2}-2\psi_{3}}\oplus V_{2\psi_{1}-2\psi_{3}}\oplus V_{-2\psi_{1}-2\psi_{2}+2\psi_{3}}
\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{-2\psi_{2}}\oplus V_{-2\psi_{1}+2\psi_{2}-2\psi_{3}}\)
Made total 178218788 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1\) ↪ \(B^{1}_4\)
3 out of 48
Subalgebra type: \(\displaystyle A^{2}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle B^{1}_2\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{2}_1\)
Basis of Cartan of centralizer: 2 vectors: (1, 1, 0, 0), (1, 0, -1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_1+A^{1}_1\) , \(\displaystyle 2A^{2}_1\) , \(\displaystyle A^{10}_1+A^{2}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle B^{1}_2+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (1, 2, 3, 4): 4
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-12}+g_{-15}\)
Positive simple generators: \(\displaystyle g_{15}+g_{12}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 6V_{2\omega_{1}}\oplus 4V_{\omega_{1}}\oplus 10V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}+2\psi_{2}}
\oplus V_{4\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}\oplus 2V_{2\omega_{1}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}
\oplus V_{\omega_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{2}}\oplus V_{2\omega_{1}-2\psi_{1}-4\psi_{2}}
\oplus V_{-2\psi_{1}-4\psi_{2}}\oplus V_{-4\psi_{1}-4\psi_{2}}\)
Made total 1971183 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{3}_1\) ↪ \(B^{1}_4\)
4 out of 48
Subalgebra type: \(\displaystyle A^{3}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{1}_1\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{3}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{3}_1\): (2, 3, 4, 4): 6
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-11}+g_{-14}\)
Positive simple generators: \(\displaystyle g_{14}+g_{11}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}6\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 2V_{3\omega_{1}}\oplus 4V_{2\omega_{1}}\oplus 6V_{\omega_{1}}\oplus 4V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{3\omega_{1}+2\psi_{1}}\oplus V_{2\omega_{1}+2\psi_{2}}\oplus V_{4\psi_{1}}\oplus V_{\omega_{1}+2\psi_{1}}
\oplus 2V_{2\omega_{1}}\oplus V_{\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus V_{3\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}}
\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{1}}\)
Made total 5294779 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{4}_1\) ↪ \(B^{1}_4\)
5 out of 48
Subalgebra type: \(\displaystyle A^{4}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{2}_1\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_3\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 1, 0), (1, 0, 0, -1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{4}_1+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (2, 4, 4, 4): 8
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-6}+g_{-13}\)
Positive simple generators: \(\displaystyle 2g_{13}+2g_{6}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}}\oplus 9V_{2\omega_{1}}\oplus 4V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+4\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}+2\psi_{2}}
\oplus V_{2\omega_{1}+2\psi_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\psi_{1}}\oplus V_{2\omega_{1}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}
\oplus V_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{1}-4\psi_{1}-2\psi_{2}}\oplus V_{2\omega_{1}-4\psi_{1}-4\psi_{2}}\)
Made total 8182791 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{6}_1\) ↪ \(B^{1}_4\)
6 out of 48
Subalgebra type: \(\displaystyle A^{6}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{6}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{6}_1\)
Basis of Cartan of centralizer: 1 vectors: (1, 1, 0, -1)
Contained up to conjugation as a direct summand of: \(\displaystyle 2A^{6}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{6}_1\): (2, 4, 6, 6): 12
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-3}+g_{-9}+g_{-13}\)
Positive simple generators: \(\displaystyle 2g_{13}+g_{9}+2g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}12\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 3V_{4\omega_{1}}\oplus 6V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+4\psi}\oplus V_{4\omega_{1}+2\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{4\omega_{1}}\oplus V_{2\psi}\oplus 2V_{2\omega_{1}}
\oplus V_{4\omega_{1}-2\psi}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}\oplus V_{-2\psi}\oplus V_{2\omega_{1}-4\psi}\)
Made total 3614672 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1\) ↪ \(B^{1}_4\)
7 out of 48
Subalgebra type: \(\displaystyle A^{10}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{2}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{10}_1+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (3, 6, 7, 8): 20
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-2}+g_{-8}+g_{-10}\)
Positive simple generators: \(\displaystyle 4g_{10}+3g_{8}+3g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 3V_{4\omega_{1}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+4\psi}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{1}}\oplus V_{3\omega_{1}-2\psi}
\oplus V_{0}\oplus V_{4\omega_{1}-4\psi}\oplus V_{-4\psi}\)
Made total 476092 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1\) ↪ \(B^{1}_4\)
8 out of 48
Subalgebra type: \(\displaystyle A^{10}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle 2A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{10}_1+A^{1}_1\) , \(\displaystyle A^{10}_1+A^{2}_1\) , \(\displaystyle A^{10}_1+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (4, 6, 6, 6): 20
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-9}\)
Positive simple generators: \(\displaystyle 3g_{9}+4g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 4V_{4\omega_{1}}\oplus V_{2\omega_{1}}\oplus 6V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+2\psi_{1}}\oplus V_{6\omega_{1}}\oplus V_{4\omega_{1}-2\psi_{1}+2\psi_{2}}\oplus V_{4\omega_{1}+2\psi_{1}-2\psi_{2}}
\oplus V_{2\psi_{2}}\oplus V_{2\omega_{1}}\oplus V_{4\omega_{1}-2\psi_{1}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus 2V_{0}\oplus V_{-4\psi_{1}+2\psi_{2}}
\oplus V_{-2\psi_{2}}\)
Made total 16244108 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{11}_1\) ↪ \(B^{1}_4\)
9 out of 48
Subalgebra type: \(\displaystyle A^{11}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{11}_1+A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{11}_1\): (4, 6, 7, 8): 22
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-9}+g_{-10}\)
Positive simple generators: \(\displaystyle g_{10}+3g_{9}+4g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/11\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}22\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 2V_{5\omega_{1}}\oplus 2V_{3\omega_{1}}\oplus 2V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{5\omega_{1}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{5\omega_{1}-2\psi}\oplus 2V_{2\omega_{1}}
\oplus V_{3\omega_{1}-2\psi}\oplus V_{0}\oplus V_{-4\psi}\)
Made total 7681 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{12}_1\) ↪ \(B^{1}_4\)
10 out of 48
Subalgebra type: \(\displaystyle A^{12}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{12}_1\): (4, 6, 8, 8): 24
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}-2g_{-3}+g_{-6}+g_{-12}\)
Positive simple generators: \(\displaystyle 4g_{12}+g_{10}+2g_{6}-4g_{5}-g_{3}+4g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/6\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}24\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 2V_{6\omega_{1}}\oplus 2V_{4\omega_{1}}\oplus 4V_{2\omega_{1}}\)
Made total 2974217 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{28}_1\) ↪ \(B^{1}_4\)
11 out of 48
Subalgebra type: \(\displaystyle A^{28}_1\) (click on type for detailed printout).
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{28}_1\): (6, 10, 12, 12): 56
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-7}\)
Positive simple generators: \(\displaystyle 6g_{7}+10g_{2}+6g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/14\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}56\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{10\omega_{1}}\oplus 3V_{6\omega_{1}}\oplus V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{10\omega_{1}}\oplus V_{6\omega_{1}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{6\omega_{1}-2\psi}\oplus V_{2\omega_{1}}\oplus V_{0}\)
Made total 3527053 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{60}_1\) ↪ \(B^{1}_4\)
12 out of 48
Subalgebra type: \(\displaystyle A^{60}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{60}_1\): (8, 14, 18, 20): 120
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-1}+g_{-2}+g_{-3}+g_{-4}\)
Positive simple generators: \(\displaystyle 10g_{4}+18g_{3}+14g_{2}+8g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/30\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}120\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{14\omega_{1}}\oplus V_{10\omega_{1}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{1}}\)
Made total 21930 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{1}_1\) ↪ \(B^{1}_4\)
13 out of 48
Subalgebra type: \(\displaystyle 2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle B^{1}_2\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle 2A^{1}_1\)
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 3A^{1}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle A^{10}_1+2A^{1}_1\) , \(\displaystyle 4A^{1}_1\) , \(\displaystyle B^{1}_2+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (1, 2, 2, 2): 2, \(\displaystyle A^{1}_1\): (1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-1}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 5V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 10V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+\omega_{2}+2\psi_{1}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}
\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-2\psi_{2}}
\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{1}+2\psi_{2}}
\oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\)
Made total 361 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{1}_1\) ↪ \(B^{1}_4\)
14 out of 48
Subalgebra type: \(\displaystyle 2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle 2A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0), (0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle 3A^{1}_1\) , \(\displaystyle A^{2}_1+2A^{1}_1\) , \(\displaystyle 4A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (1, 2, 2, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 6V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus V_{4\psi_{2}}\oplus V_{4\psi_{1}}\oplus V_{\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}}
\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+2\psi_{1}-2\psi_{2}}
\oplus 2V_{0}\oplus V_{\omega_{1}-2\psi_{1}}\oplus V_{\omega_{2}-2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-2\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{1}}
\oplus V_{-4\psi_{2}}\)
Made total 363 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1+A^{1}_1\) ↪ \(B^{1}_4\)
15 out of 48
Subalgebra type: \(\displaystyle A^{2}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_1+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (1, 2, 3, 4): 4, \(\displaystyle A^{1}_1\): (1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-13}+g_{-14}\), \(\displaystyle g_{-8}\)
Positive simple generators: \(\displaystyle g_{14}+g_{13}\), \(\displaystyle g_{8}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}
\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}
\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}\)
Made total 7769 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1+A^{1}_1\) ↪ \(B^{1}_4\)
16 out of 48
Subalgebra type: \(\displaystyle A^{2}_1+A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 2 vectors: (0, 1, 0, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{2}_1+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 2, 2, 2): 4, \(\displaystyle A^{1}_1\): (0, 1, 2, 2): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-11}\), \(\displaystyle g_{-14}\)
Positive simple generators: \(\displaystyle g_{11}\), \(\displaystyle g_{14}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 4V_{\omega_{2}}\oplus 4V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{2}+2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi_{1}}\oplus V_{2\omega_{1}+2\psi_{2}}\oplus V_{4\psi_{1}}
\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{2}-2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{1}-2\psi_{2}}
\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{1}}\)
Made total 578114 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{2}_1\) ↪ \(B^{1}_4\)
17 out of 48
Subalgebra type: \(\displaystyle 2A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (1, 2, 3, 4): 4, \(\displaystyle A^{2}_1\): (1, 2, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-12}+g_{-15}\), \(\displaystyle g_{-2}+g_{-8}\)
Positive simple generators: \(\displaystyle g_{15}+g_{12}\), \(\displaystyle g_{8}+g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}+2\omega_{2}}\oplus 3V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{2}+4\psi}\oplus V_{2\omega_{1}+4\psi}\oplus V_{\omega_{1}+\omega_{2}+2\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}
\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{2}-2\psi}\oplus V_{2\omega_{2}-4\psi}\oplus V_{2\omega_{1}-4\psi}\)
Made total 234876 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{2}_1\) ↪ \(B^{1}_4\)
18 out of 48
Subalgebra type: \(\displaystyle 2A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1\) .
Centralizer: \(\displaystyle A^{2}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle 3A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 2, 2, 2): 4, \(\displaystyle A^{2}_1\): (0, 2, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-8}+g_{-13}\), \(\displaystyle -g_{-6}+g_{-12}\)
Positive simple generators: \(\displaystyle g_{13}+g_{8}\), \(\displaystyle g_{12}-g_{6}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}+2\omega_{2}}\oplus 4V_{2\omega_{2}}\oplus 4V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{2}+2\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\psi}\oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}
\oplus V_{0}\oplus V_{2\omega_{2}-2\psi}\oplus V_{2\omega_{1}-2\psi}\oplus V_{-2\psi}\)
Made total 1889741 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{3}_1+A^{1}_1\) ↪ \(B^{1}_4\)
19 out of 48
Subalgebra type: \(\displaystyle A^{3}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{3}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{3}_1\): (2, 3, 4, 4): 6, \(\displaystyle A^{1}_1\): (0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-11}+g_{-14}\), \(\displaystyle g_{-2}\)
Positive simple generators: \(\displaystyle g_{14}+g_{11}\), \(\displaystyle g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/3 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}6 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 3V_{\omega_{1}+\omega_{2}}\oplus 4V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+\omega_{2}+2\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}
\oplus 2V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{2}-2\psi}\oplus V_{2\omega_{1}-2\psi}\)
Made total 33402 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{4}_1+A^{2}_1\) ↪ \(B^{1}_4\)
20 out of 48
Subalgebra type: \(\displaystyle A^{4}_1+A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{4}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (2, 4, 4, 4): 8, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-6}+g_{-13}\), \(\displaystyle g_{-7}\)
Positive simple generators: \(\displaystyle 2g_{13}+2g_{6}\), \(\displaystyle g_{7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 2V_{2\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{2\omega_{1}+4\psi}\oplus V_{2\omega_{1}+2\omega_{2}+2\psi}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi}
\oplus V_{0}\oplus V_{2\omega_{1}-4\psi}\)
Made total 16326 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(2A^{6}_1\) ↪ \(B^{1}_4\)
21 out of 48
Subalgebra type: \(\displaystyle 2A^{6}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{6}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{6}_1\): (2, 4, 6, 6): 12, \(\displaystyle A^{6}_1\): (2, 2, 0, 2): 12
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-8}+g_{-9}+g_{-10}\), \(\displaystyle -1/2g_{-1}+g_{-2}-1/2g_{-4}\)
Positive simple generators: \(\displaystyle 2g_{10}+g_{9}+2g_{8}\), \(\displaystyle -2g_{4}+2g_{2}-4g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/3 & 0\\ 0 & 1/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}12 & 0\\ 0 & 12\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}+4\omega_{2}}\oplus V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 3425923 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+A^{1}_1\) ↪ \(B^{1}_4\)
22 out of 48
Subalgebra type: \(\displaystyle A^{10}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{10}_1+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (4, 6, 6, 6): 20, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-9}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle 3g_{9}+4g_{1}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{6\omega_{1}}\oplus 2V_{4\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\omega_{1}+\omega_{2}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{4\psi}\oplus V_{4\omega_{1}+\omega_{2}-2\psi}\oplus V_{2\omega_{2}}
\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{-4\psi}\)
Made total 7465 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+A^{2}_1\) ↪ \(B^{1}_4\)
23 out of 48
Subalgebra type: \(\displaystyle A^{10}_1+A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (3, 6, 7, 8): 20, \(\displaystyle A^{2}_1\): (1, 0, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-5}+g_{-6}+g_{-10}\), \(\displaystyle g_{-1}+g_{-3}\)
Positive simple generators: \(\displaystyle 4g_{10}+3g_{6}+3g_{5}\), \(\displaystyle g_{3}+g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 681593 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+A^{2}_1\) ↪ \(B^{1}_4\)
24 out of 48
Subalgebra type: \(\displaystyle A^{10}_1+A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (4, 6, 6, 6): 20, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-6}+g_{-12}\), \(\displaystyle -g_{-3}+g_{-10}\)
Positive simple generators: \(\displaystyle 3g_{12}+3g_{6}+4g_{1}\), \(\displaystyle g_{10}-g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0\\ 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus 2V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 57983 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{11}_1+A^{1}_1\) ↪ \(B^{1}_4\)
25 out of 48
Subalgebra type: \(\displaystyle A^{11}_1+A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{11}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{11}_1\): (4, 6, 7, 8): 22, \(\displaystyle A^{1}_1\): (0, 0, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \(\displaystyle g_{-1}+g_{-9}+g_{-10}\), \(\displaystyle g_{-3}\)
Positive simple generators: \(\displaystyle g_{10}+3g_{9}+4g_{1}\), \(\displaystyle g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/11 & 0\\ 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}22 & 0\\ 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\)
Made total 541 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{1}_2\) ↪ \(B^{1}_4\)
26 out of 48
Subalgebra type: \(\displaystyle A^{1}_2\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle A^{2}_1\) + \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_3\)
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{1}_2+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_2\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1\\ -1 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1\\ -1 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+\omega_{2}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 4V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+4\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+4\psi_{1}}\oplus V_{2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}+2\psi_{2}}
\oplus V_{\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{0}\oplus V_{\omega_{2}-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{2}}
\oplus V_{\omega_{1}-4\psi_{1}}\oplus V_{-2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}-4\psi_{1}-2\psi_{2}}\)
Made total 361 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2\) ↪ \(B^{1}_4\)
27 out of 48
Subalgebra type: \(\displaystyle B^{1}_2\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle A^{2}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle B^{1}_2+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (1, 2, 2, 2): 2, (-1, -2, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{8}+g_{2}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}+g_{-8}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1\\ -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2\\ -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 2V_{\omega_{2}}\oplus 3V_{\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+4\psi}\oplus V_{4\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}
\oplus V_{\omega_{1}-4\psi}\oplus V_{-4\psi}\)
Made total 170534 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2\) ↪ \(B^{1}_4\)
28 out of 48
Subalgebra type: \(\displaystyle B^{1}_2\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_1\) .
Centralizer: \(\displaystyle 2A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2\)
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0), (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle B^{1}_2+A^{1}_1\) , \(\displaystyle B^{1}_2+A^{2}_1\) , \(\displaystyle B^{1}_2+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (1, 2, 2, 2): 2, (0, -2, -2, -2): 4
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{9}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-9}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1\\ -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2\\ -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 6V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+2\psi_{1}}\oplus V_{2\psi_{2}}\oplus V_{2\omega_{2}}\oplus V_{4\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}-2\psi_{1}+2\psi_{2}}
\oplus V_{\omega_{1}+2\psi_{1}-2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}-2\psi_{1}}\oplus V_{-4\psi_{1}+2\psi_{2}}\oplus V_{-2\psi_{2}}\)
Made total 11913944 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(G^{1}_2\) ↪ \(B^{1}_4\)
29 out of 48
Subalgebra type: \(\displaystyle G^{1}_2\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{3}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle G^{1}_2\): (2, 3, 4, 4): 6, (-1, -1, -2, -2): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \(\displaystyle g_{-11}+g_{-14}\), \(\displaystyle g_{15}\)
Positive simple generators: \(\displaystyle g_{14}+g_{11}\), \(\displaystyle g_{-15}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/3 & -1\\ -1 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}6 & -3\\ -3 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{2}}\oplus 3V_{\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+2\psi}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}-2\psi}\)
Made total 33398 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{3}_2\) ↪ \(B^{1}_4\)
30 out of 48
Subalgebra type: \(\displaystyle A^{3}_2\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{3}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{3}_2\): (2, 3, 4, 4): 6, (-1, 0, -2, -2): 6
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \(\displaystyle g_{-8}+g_{-13}+g_{-14}\), \(\displaystyle g_{7}-g_{3}+g_{1}\)
Positive simple generators: \(\displaystyle g_{14}+g_{13}+g_{8}\), \(\displaystyle g_{-1}+g_{-7}-g_{-10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2/3 & -1/3\\ -1/3 & 2/3\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}6 & -3\\ -3 & 6\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{3\omega_{2}}\oplus V_{3\omega_{1}}\oplus 2V_{\omega_{1}+\omega_{2}}\)
Made total 1039947 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(3A^{1}_1\) ↪ \(B^{1}_4\)
31 out of 48
Subalgebra type: \(\displaystyle 3A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle 2A^{1}_1\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle 4A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (1, 2, 2, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-3}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{10}\), \(\displaystyle g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
\oplus 2V_{\omega_{1}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus V_{4\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}
\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi}\oplus V_{0}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}\)
Made total 446 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1+2A^{1}_1\) ↪ \(B^{1}_4\)
32 out of 48
Subalgebra type: \(\displaystyle A^{2}_1+2A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1+A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (1, 2, 3, 4): 4, \(\displaystyle A^{1}_1\): (1, 1, 1, 0): 2, \(\displaystyle A^{1}_1\): (0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-13}+g_{-14}\), \(\displaystyle g_{-8}\), \(\displaystyle g_{-2}\)
Positive simple generators: \(\displaystyle g_{14}+g_{13}\), \(\displaystyle g_{8}\), \(\displaystyle g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}
\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\)
Made total 545 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{2}_1+2A^{1}_1\) ↪ \(B^{1}_4\)
33 out of 48
Subalgebra type: \(\displaystyle A^{2}_1+2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{2}_1+A^{1}_1\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 2, 2, 2): 4, \(\displaystyle A^{1}_1\): (0, 1, 2, 2): 2, \(\displaystyle A^{1}_1\): (0, 1, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-11}\), \(\displaystyle g_{-14}\), \(\displaystyle g_{-2}\)
Positive simple generators: \(\displaystyle g_{11}\), \(\displaystyle g_{14}\), \(\displaystyle g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}
\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{2}+\omega_{3}+2\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}
\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{3}-2\psi}\oplus V_{2\omega_{1}-2\psi}\)
Made total 33211 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(3A^{2}_1\) ↪ \(B^{1}_4\)
34 out of 48
Subalgebra type: \(\displaystyle 3A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle 2A^{2}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{2}_1\): (2, 2, 2, 2): 4, \(\displaystyle A^{2}_1\): (0, 2, 2, 2): 4, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-8}+g_{-13}\), \(\displaystyle -g_{-6}+g_{-12}\), \(\displaystyle g_{-7}\)
Positive simple generators: \(\displaystyle g_{13}+g_{8}\), \(\displaystyle g_{12}-g_{6}\), \(\displaystyle g_{7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}
\oplus V_{2\omega_{1}}\)
Made total 25928 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{10}_1+2A^{1}_1\) ↪ \(B^{1}_4\)
35 out of 48
Subalgebra type: \(\displaystyle A^{10}_1+2A^{1}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{10}_1+A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{10}_1\): (4, 6, 6, 6): 20, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \(\displaystyle g_{-1}+g_{-9}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-3}\)
Positive simple generators: \(\displaystyle 3g_{9}+4g_{1}\), \(\displaystyle g_{10}\), \(\displaystyle g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 537 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{1}_2+A^{2}_1\) ↪ \(B^{1}_4\)
36 out of 48
Subalgebra type: \(\displaystyle A^{1}_2+A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_2\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, -1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_2\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, \(\displaystyle A^{2}_1\): (0, 0, 0, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & 0\\ 0 & 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}}
\oplus V_{\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{2}+4\psi}\oplus V_{\omega_{1}+2\omega_{3}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}+2\omega_{3}-2\psi}
\oplus V_{0}\oplus V_{\omega_{1}-4\psi}\)
Made total 444 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+A^{1}_1\) ↪ \(B^{1}_4\)
37 out of 48
Subalgebra type: \(\displaystyle B^{1}_2+A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2\) .
Centralizer: \(\displaystyle A^{1}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_2+A^{1}_1\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \(\displaystyle B^{1}_2+2A^{1}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (1, 2, 2, 2): 2, (0, -2, -2, -2): 4, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{9}\), \(\displaystyle g_{-10}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-9}\), \(\displaystyle g_{10}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{4\psi}\oplus V_{\omega_{1}+\omega_{3}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}\oplus V_{\omega_{1}+\omega_{3}-2\psi}
\oplus V_{-4\psi}\)
Made total 7313 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+A^{2}_1\) ↪ \(B^{1}_4\)
38 out of 48
Subalgebra type: \(\displaystyle B^{1}_2+A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (1, 2, 2, 2): 2, (0, -2, -2, -2): 4, \(\displaystyle A^{2}_1\): (0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{12}+g_{6}\), \(\displaystyle -g_{-3}+g_{-10}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-6}+g_{-12}\), \(\displaystyle g_{10}-g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+2\omega_{3}}\oplus 2V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\)
Made total 57977 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+A^{2}_1\) ↪ \(B^{1}_4\)
39 out of 48
Subalgebra type: \(\displaystyle B^{1}_2+A^{2}_1\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (1, 2, 2, 2): 2, (-1, -2, -1, 0): 4, \(\displaystyle A^{2}_1\): (1, 0, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{6}+g_{5}\), \(\displaystyle g_{-1}+g_{-3}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-5}+g_{-6}\), \(\displaystyle g_{3}+g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\)
Made total 682621 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{1}_3\) ↪ \(B^{1}_4\)
40 out of 48
Subalgebra type: \(\displaystyle A^{1}_3\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_2\) .
Centralizer: \(\displaystyle A^{2}_1\) .
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle A^{1}_3\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \(\displaystyle A^{1}_3+A^{2}_1\) .

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_3\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (-1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{1}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+\omega_{3}}\oplus 3V_{\omega_{2}}\oplus 3V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{2}+2\psi}\oplus V_{2\psi}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{2}}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}\oplus V_{-2\psi}\)
Made total 444 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{1}_3\) ↪ \(B^{1}_4\)
41 out of 48
Subalgebra type: \(\displaystyle A^{1}_3\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_2\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, -2)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_3\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (0, 0, -1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{3}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{2}+4\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{0}\oplus V_{\omega_{3}-2\psi}\oplus V_{\omega_{2}-4\psi}\)
Made total 444 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_3\) ↪ \(B^{1}_4\)
42 out of 48
Subalgebra type: \(\displaystyle B^{1}_3\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_2\) .
Centralizer: \(\displaystyle T_{1}\) (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_3\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (0, 0, -2, -2): 4
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{7}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-7}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -2\\ 0 & -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus V_{0}\)
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \(\displaystyle V_{\omega_{1}+2\psi}\oplus V_{\omega_{2}}\oplus V_{0}\oplus V_{\omega_{1}-2\psi}\)
Made total 466242 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_3\) ↪ \(B^{1}_4\)
43 out of 48
Subalgebra type: \(\displaystyle B^{1}_3\) (click on type for detailed printout).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_2\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_3\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (-1, 0, -1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{3}+g_{1}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-1}+g_{-3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 2 & -2\\ 0 & -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{3}}\oplus V_{\omega_{2}}\oplus V_{\omega_{1}}\)
Made total 2776 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(4A^{1}_1\) ↪ \(B^{1}_4\)
44 out of 48
Subalgebra type: \(\displaystyle 4A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle 3A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_1\): (1, 2, 2, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 0): 2, \(\displaystyle A^{1}_1\): (1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-3}\), \(\displaystyle g_{-1}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{10}\), \(\displaystyle g_{3}\), \(\displaystyle g_{1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}}
\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\)
Made total 529 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_2+2A^{1}_1\) ↪ \(B^{1}_4\)
45 out of 48
Subalgebra type: \(\displaystyle B^{1}_2+2A^{1}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle B^{1}_2+A^{1}_1\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_2\): (1, 2, 2, 2): 2, (0, -2, -2, -2): 4, \(\displaystyle A^{1}_1\): (0, 0, 1, 2): 2, \(\displaystyle A^{1}_1\): (0, 0, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{9}\), \(\displaystyle g_{-10}\), \(\displaystyle g_{-3}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-9}\), \(\displaystyle g_{10}\), \(\displaystyle g_{3}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{1}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\)
Made total 533 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(A^{1}_3+A^{2}_1\) ↪ \(B^{1}_4\)
46 out of 48
Subalgebra type: \(\displaystyle A^{1}_3+A^{2}_1\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_3\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{1}_3\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (-1, 0, 0, 0): 2, \(\displaystyle A^{2}_1\): (0, 0, 0, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 18.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{1}\), \(\displaystyle g_{-4}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-1}\), \(\displaystyle g_{4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{2}+2\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\)
Made total 527 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(D^{1}_4\) ↪ \(B^{1}_4\)
47 out of 48
Subalgebra type: \(\displaystyle D^{1}_4\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_3\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle D^{1}_4\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (0, 0, -1, 0): 2, (-1, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 28.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{3}\), \(\displaystyle g_{1}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-3}\), \(\displaystyle g_{-1}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & -1\\ 0 & -1 & 2 & 0\\ 0 & -1 & 0 & 2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & -1\\ 0 & -1 & 2 & 0\\ 0 & -1 & 0 & 2\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{3}}\oplus V_{\omega_{2}}\)
Made total 527 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra \(B^{1}_4\) ↪ \(B^{1}_4\)
48 out of 48
Subalgebra type: \(\displaystyle B^{1}_4\) (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \(\displaystyle A^{1}_3\) .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle B^{1}_4\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle B^{1}_4\): (1, 2, 2, 2): 2, (0, -1, 0, 0): 2, (0, 0, -1, 0): 2, (0, 0, 0, -2): 4
Dimension of subalgebra generated by predefined or computed generators: 36.
Negative simple generators: \(\displaystyle g_{-16}\), \(\displaystyle g_{2}\), \(\displaystyle g_{3}\), \(\displaystyle g_{4}\)
Positive simple generators: \(\displaystyle g_{16}\), \(\displaystyle g_{-2}\), \(\displaystyle g_{-3}\), \(\displaystyle g_{-4}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ 0 & 0 & -1 & 1\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{\omega_{2}}\)
Made total 527 arithmetic operations while solving the Serre relations polynomial system.

Of the 12 h element conjugacy classes 6 had their Weyl group orbits computed and buffered. The h elements and their computed orbit sizes follow.
h elementorbit size
(8, 14, 18, 20)size not computed
(6, 10, 12, 12)size not computed
(4, 6, 8, 8)size not computed
(4, 6, 7, 8)size not computed
(4, 6, 6, 6)size not computed
(3, 6, 7, 8)size not computed
(2, 4, 6, 6)32
(2, 4, 4, 4)24
(2, 3, 4, 4)96
(2, 2, 2, 2)8
(1, 2, 3, 4)16
(1, 2, 2, 2)24

Number of sl(2) subalgebras: 12.
Let h be in the Cartan subalgebra. Let \(\alpha_1, ..., \alpha_n\) be simple roots with respect to h. Then the h-characteristic, as defined by E. Dynkin, is the n-tuple \((\alpha_1(h), ..., \alpha_n(h))\).

The actual realization of h. The coordinates of h are given with respect to the fixed original simple basis. Note that the h-characteristic is computed using a possibly different simple basis, more precisely, with respect to any h-positive simple basis.
A regular semisimple subalgebra might contain an sl(2) such that the sl(2) has no centralizer in the regular semisimple subalgebra, but the regular semisimple subalgebra might fail to be minimal containing. This happens when another minimal containing regular semisimple subalgebra of equal rank nests as a root subalgebra in the containing SA. See Dynkin, Semisimple Lie subalgebras of semisimple Lie algebras, remark before Theorem 10.4.
The \(sl(2)\) submodules of the ambient Lie algebra are parametrized by their highest weight with respect to the Cartan element h of \(sl(2)\). In turn, the highest weight is a positive integer multiple of the fundamental highest weight \(\psi\). \(V_{l\psi}\) is \(l + 1\)-dimensional.


Type + realization linkh-CharacteristicRealization of hsl(2)-module decomposition of the ambient Lie algebra
\(\psi=\) the fundamental \(sl(2)\)-weight.
Centralizer dimensionType of semisimple part of centralizer, if knownThe square of the length of the weight dual to h.Dynkin index Minimal containing regular semisimple SAsContaining regular semisimple SAs in which the sl(2) has no centralizer
\(A^{60}_1\)(2, 2, 2, 2)(8, 14, 18, 20)\(V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
0 \(\displaystyle 0\)12060B^{1}_4; B^{1}_4;
\(A^{28}_1\)(2, 2, 2, 0)(6, 10, 12, 12)\(V_{10\psi}+3V_{6\psi}+V_{2\psi}+V_{0}\)
1 \(\displaystyle 0\)5628D^{1}_4; B^{1}_3; D^{1}_4; B^{1}_3;
\(A^{12}_1\)(2, 0, 2, 0)(4, 6, 8, 8)\(2V_{6\psi}+2V_{4\psi}+4V_{2\psi}\)
0 \(\displaystyle 0\)2412B^{1}_4; D^{1}_4; A^{1}_3+A^{2}_1; B^{1}_2+2A^{1}_1; B^{1}_4; D^{1}_4; A^{1}_3+A^{2}_1; B^{1}_2+2A^{1}_1;
\(A^{11}_1\)(2, 1, 0, 1)(4, 6, 7, 8)\(V_{6\psi}+2V_{5\psi}+2V_{3\psi}+2V_{2\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)2211B^{1}_2+A^{1}_1; B^{1}_2+A^{1}_1;
\(A^{10}_1\)(2, 2, 0, 0)(4, 6, 6, 6)\(V_{6\psi}+4V_{4\psi}+V_{2\psi}+6V_{0}\)
6 \(\displaystyle 2A^{1}_1\)2010A^{1}_3; B^{1}_2; A^{1}_3; B^{1}_2;
\(A^{10}_1\)(0, 2, 0, 1)(3, 6, 7, 8)\(V_{6\psi}+3V_{4\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
3 not computed2010A^{1}_3; A^{1}_3;
\(A^{6}_1\)(0, 0, 2, 0)(2, 4, 6, 6)\(3V_{4\psi}+6V_{2\psi}+3V_{0}\)
3 not computed126A^{1}_2+A^{2}_1; A^{1}_2+A^{2}_1;
\(A^{4}_1\)(0, 2, 0, 0)(2, 4, 4, 4)\(V_{4\psi}+9V_{2\psi}+4V_{0}\)
4 \(\displaystyle A^{2}_1\)844A^{1}_1; A^{2}_1+2A^{1}_1; A^{1}_2; 4A^{1}_1; A^{2}_1+2A^{1}_1; A^{1}_2;
\(A^{3}_1\)(1, 0, 1, 0)(2, 3, 4, 4)\(2V_{3\psi}+4V_{2\psi}+6V_{\psi}+4V_{0}\)
4 \(\displaystyle A^{1}_1\)633A^{1}_1; A^{2}_1+A^{1}_1; 3A^{1}_1; A^{2}_1+A^{1}_1;
\(A^{2}_1\)(2, 0, 0, 0)(2, 2, 2, 2)\(7V_{2\psi}+15V_{0}\)
15 \(\displaystyle A^{1}_3\)422A^{1}_1; A^{2}_1; 2A^{1}_1; A^{2}_1;
\(A^{2}_1\)(0, 0, 0, 1)(1, 2, 3, 4)\(6V_{2\psi}+4V_{\psi}+10V_{0}\)
10 not computed422A^{1}_1; 2A^{1}_1;
\(A^{1}_1\)(0, 1, 0, 0)(1, 2, 2, 2)\(V_{2\psi}+10V_{\psi}+13V_{0}\)
13 \(\displaystyle B^{1}_2+A^{1}_1\)21A^{1}_1; A^{1}_1;


Length longest root ambient algebra squared/4= 1/2

Given a root subsystem P, and a root subsubsystem P_0, in (10.2) of Semisimple subalgebras of semisimple Lie algebras, E. Dynkin defines a numerical constant e(P, P_0) (which we call Dynkin epsilon).
In Theorem 10.3, Dynkin proves that if an sl(2) is an S-subalgebra in the root subalgebra generated by P, such that it has characteristic 2 for all simple roots of P lying in P_0, then e(P, P_0)= 0. It turns out by direct computation that, in the current case of B^{1}_4, e(P,P_0)= 0 implies that an S-sl(2) subalgebra of the root subalgebra generated by P with characteristic with 2's in the simple roots of P_0 always exists. Note that Theorem 10.3 is stated in one direction only.

h-characteristic: (2, 2, 2, 2)
Length of the weight dual to h: 120
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: B^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 20h_{4}+18h_{3}+14h_{2}+8h_{1}\)
\( e = g_{4}+18/5g_{3}+7g_{2}+8g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{5} -8~\\x_{2} x_{6} -14~\\x_{3} x_{7} -18~\\2x_{4} x_{8} -20~\\\end{array}\)


h-characteristic: (2, 2, 2, 0)
Length of the weight dual to h: 56
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_4 Containing regular semisimple subalgebra number 2: B^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+3V_{6\psi}+V_{2\psi}+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 12h_{4}+12h_{3}+10h_{2}+6h_{1}\)
\( e = 6/5g_{10}+3/5g_{3}+5g_{2}+6g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{5} -6~\\x_{2} x_{6} -10~\\x_{4} x_{8} +x_{3} x_{7} -12~\\2x_{3} x_{7} -12~\\\end{array}\)


h-characteristic: (2, 0, 2, 0)
Length of the weight dual to h: 24
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 4
Containing regular semisimple subalgebra number 1: B^{1}_4 Containing regular semisimple subalgebra number 2: D^{1}_4 Containing regular semisimple subalgebra number 3: A^{1}_3+A^{2}_1 Containing regular semisimple subalgebra number 4: B^{1}_2+2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{6\psi}+2V_{4\psi}+4V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{4}+8h_{3}+6h_{2}+4h_{1}\)
\( e = -90570552/535157261g_{12}+132205149/535157261g_{10}-5780680/535157261g_{9}+42230393/535157261g_{7}+81486978/535157261g_{6} \\ +18244/17021g_{5}-37482156/535157261g_{3}+9968/17021g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{16} +2x_{5} x_{14} +x_{2} x_{12} -x_{1} x_{11} ~\\-x_{6} x_{16} -x_{5} x_{15} +x_{4} x_{14} +x_{2} x_{13} ~\\x_{8} x_{15} +2x_{6} x_{13} +x_{4} x_{10} -x_{3} x_{9} ~\\-x_{8} x_{14} -x_{7} x_{13} +x_{6} x_{12} +x_{5} x_{10} ~\\x_{3} x_{11} +x_{1} x_{9} -4~\\x_{7} x_{15} +2x_{5} x_{13} +x_{2} x_{10} +x_{1} x_{9} -6~\\x_{8} x_{16} +x_{7} x_{15} +2x_{6} x_{14} +2x_{5} x_{13} +x_{4} x_{12} +x_{2} x_{10} -8~\\2x_{6} x_{14} +2x_{5} x_{13} +2x_{4} x_{12} +2x_{2} x_{10} -8~\\\end{array}\)


h-characteristic: (2, 1, 0, 1)
Length of the weight dual to h: 22
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: B^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+2V_{5\psi}+2V_{3\psi}+2V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{4}+7h_{3}+6h_{2}+4h_{1}\)
\( e = 1/5g_{10}+3/2g_{9}+4g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{4} -4~\\2x_{2} x_{5} -6~\\x_{3} x_{6} +2x_{2} x_{5} -7~\\2x_{3} x_{6} +2x_{2} x_{5} -8~\\\end{array}\)


h-characteristic: (2, 2, 0, 0)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: A^{1}_3 Containing regular semisimple subalgebra number 2: B^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+4V_{4\psi}+V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{4}+6h_{3}+6h_{2}+4h_{1}\)
\( e = 3g_{14}+3/5g_{2}+2g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{2} x_{5} -4~\\x_{3} x_{6} +x_{1} x_{4} -6~\\2x_{1} x_{4} -6~\\2x_{1} x_{4} -6~\\\end{array}\)


h-characteristic: (0, 2, 0, 1)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+3V_{4\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{4}+7h_{3}+6h_{2}+3h_{1}\)
\( e = 2g_{10}+3g_{8}+3/5g_{2}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{4} -3~\\x_{3} x_{6} +x_{1} x_{4} -6~\\x_{2} x_{5} +x_{1} x_{4} -7~\\2x_{2} x_{5} -8~\\\end{array}\)


h-characteristic: (0, 0, 2, 0)
Length of the weight dual to h: 12
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_2+A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{4\psi}+6V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{4}+6h_{3}+4h_{2}+2h_{1}\)
\( e = 2g_{13}+1/5g_{7}+g_{6}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{4} -2~\\x_{2} x_{5} +x_{1} x_{4} -4~\\2x_{3} x_{6} +x_{2} x_{5} +x_{1} x_{4} -6~\\2x_{3} x_{6} +2x_{1} x_{4} -6~\\\end{array}\)


h-characteristic: (0, 2, 0, 0)
Length of the weight dual to h: 8
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 4A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+2A^{1}_1 Containing regular semisimple subalgebra number 3: A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{4\psi}+9V_{2\psi}+4V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{4}+4h_{3}+4h_{2}+2h_{1}\)
\( e = g_{15}+1/5g_{12}+1/10g_{6}+1/2g_{5}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{2} x_{6} +x_{1} x_{5} -2~\\x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +x_{1} x_{5} -4~\\x_{4} x_{8} +x_{3} x_{7} +2x_{1} x_{5} -4~\\2x_{3} x_{7} +2x_{1} x_{5} -4~\\\end{array}\)


h-characteristic: (1, 0, 1, 0)
Length of the weight dual to h: 6
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 3A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{3\psi}+4V_{2\psi}+6V_{\psi}+4V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{4}+4h_{3}+3h_{2}+2h_{1}\)
\( e = 1/5g_{14}+g_{13}+1/2g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{2} x_{5} +x_{1} x_{4} -2~\\x_{3} x_{6} +x_{2} x_{5} +x_{1} x_{4} -3~\\2x_{3} x_{6} +x_{2} x_{5} +x_{1} x_{4} -4~\\2x_{3} x_{6} +2x_{1} x_{4} -4~\\\end{array}\)


h-characteristic: (2, 0, 0, 0)
Length of the weight dual to h: 4
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: \(7V_{2\psi}+15V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 2h_{4}+2h_{3}+2h_{2}+2h_{1}\)
\( e = g_{16}+1/2g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{2} x_{4} +x_{1} x_{3} -2~\\2x_{1} x_{3} -2~\\2x_{1} x_{3} -2~\\2x_{1} x_{3} -2~\\\end{array}\)


h-characteristic: (0, 0, 0, 1)
Length of the weight dual to h: 4
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(6V_{2\psi}+4V_{\psi}+10V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{4}+3h_{3}+2h_{2}+h_{1}\)
\( e = g_{16}+1/2g_{10}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{3} -1~\\2x_{1} x_{3} -2~\\x_{2} x_{4} +2x_{1} x_{3} -3~\\2x_{2} x_{4} +2x_{1} x_{3} -4~\\\end{array}\)


h-characteristic: (0, 1, 0, 0)
Length of the weight dual to h: 2
Simple basis ambient algebra w.r.t defining h: 4 vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{2\psi}+10V_{\psi}+13V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 2h_{4}+2h_{3}+2h_{2}+h_{1}\)
\( e = g_{16}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{2} -1~\\2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\\end{array}\)


Calculator input for loading subalgebras directly without recomputation. Subalgebras found so far: 48
Orbit sizes: A^60_1: n/a; A^28_1: n/a; A^12_1: n/a; A^11_1: n/a; A^10_1: n/a; A^10_1: n/a; A^6_1: 32; A^4_1: 24; A^3_1: 96; A^2_1: 8; A^2_1: 16; A^1_1: 24;
Current subalgebra chain length: 0


SetOutputFile("subalgebras_B^{1}_4");
LoadSemisimpleSubalgebras {}(AmbientDynkinType=B^{1}{}\left(4\right);CurrentChain=\left(\right);NumExploredTypes=\left(\right);NumExploredHs=\left(\right);Subalgebras=\left((DynkinType=A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right)\right)), (DynkinType=A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-11\right), g{}\left(11\right)\right)), (DynkinType=A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 3 & 4 \end{pmatrix};generators=\left(g{}\left(-15\right)+g{}\left(-12\right), g{}\left(15\right)+g{}\left(12\right)\right)), (DynkinType=A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 3 & 4 & 4 \end{pmatrix};generators=\left(g{}\left(-14\right)+g{}\left(-11\right), g{}\left(14\right)+g{}\left(11\right)\right)), (DynkinType=A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 \end{pmatrix};generators=\left(g{}\left(-13\right)+g{}\left(-6\right), 2 g{}\left(13\right)+2 g{}\left(6\right)\right)), (DynkinType=A^{6}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 6 \end{pmatrix};generators=\left(g{}\left(-3\right)+g{}\left(-13\right)+g{}\left(-9\right), 2 g{}\left(3\right)+2 g{}\left(13\right)+g{}\left(9\right)\right)), (DynkinType=A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}3 & 6 & 7 & 8 \end{pmatrix};generators=\left(g{}\left(-2\right)+g{}\left(-10\right)+g{}\left(-8\right), 3 g{}\left(2\right)+4 g{}\left(10\right)+3 g{}\left(8\right)\right)), (DynkinType=A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 6 & 6 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-9\right), 4 g{}\left(1\right)+3 g{}\left(9\right)\right)), (DynkinType=A^{11}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 7 & 8 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-9\right)+g{}\left(-10\right), 4 g{}\left(1\right)+3 g{}\left(9\right)+g{}\left(10\right)\right)), (DynkinType=A^{12}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 8 & 8 \end{pmatrix};generators=\left(g{}\left(-1\right)-2 g{}\left(-3\right)+g{}\left(-12\right)+g{}\left(-6\right), 4 g{}\left(1\right)-g{}\left(3\right)-4 g{}\left(5\right)+2 g{}\left(6\right)+4 g{}\left(12\right)+g{}\left(10\right)\right)), (DynkinType=A^{28}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 10 & 12 & 12 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-7\right), 6 g{}\left(1\right)+10 g{}\left(2\right)+6 g{}\left(7\right)\right)), (DynkinType=A^{60}{}\left(1\right);ElementsCartan=\begin{pmatrix}8 & 14 & 18 & 20 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-3\right)+g{}\left(-4\right), 8 g{}\left(1\right)+14 g{}\left(2\right)+18 g{}\left(3\right)+10 g{}\left(4\right)\right)), (DynkinType=2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 1 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-1\right), g{}\left(1\right)\right)), (DynkinType=2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & 0 & 1 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 3 & 4\\ 1 & 1 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-13\right)+g{}\left(-14\right), g{}\left(13\right)+g{}\left(14\right), g{}\left(-8\right), g{}\left(8\right)\right)), (DynkinType=A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2\\ 0 & 1 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-11\right), g{}\left(11\right), g{}\left(-14\right), g{}\left(14\right)\right)), (DynkinType=2 A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 3 & 4\\ 1 & 2 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-15\right)+g{}\left(-12\right), g{}\left(15\right)+g{}\left(12\right), g{}\left(-2\right)+g{}\left(-8\right), g{}\left(2\right)+g{}\left(8\right)\right)), (DynkinType=2 A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2\\ 0 & 2 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-13\right)+g{}\left(-8\right), g{}\left(13\right)+g{}\left(8\right), g{}\left(-12\right)-g{}\left(-6\right), g{}\left(12\right)-g{}\left(6\right)\right)), (DynkinType=A^{3}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 3 & 4 & 4\\ 0 & 1 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-14\right)+g{}\left(-11\right), g{}\left(14\right)+g{}\left(11\right), g{}\left(-2\right), g{}\left(2\right)\right)), (DynkinType=A^{4}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-13\right)+g{}\left(-6\right), 2 g{}\left(13\right)+2 g{}\left(6\right), g{}\left(-7\right), g{}\left(7\right)\right)), (DynkinType=2 A^{6}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 6\\ 2 & 2 & 0 & 2 \end{pmatrix};generators=\left(g{}\left(-8\right)+g{}\left(-9\right)+g{}\left(-10\right), 2 g{}\left(8\right)+g{}\left(9\right)+2 g{}\left(10\right), -\frac{1}{2} g{}\left(-1\right)+g{}\left(-2\right)-\frac{1}{2} g{}\left(-4\right), -4 g{}\left(1\right)+2 g{}\left(2\right)-2 g{}\left(4\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 6 & 6\\ 0 & 0 & 1 & 2 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-9\right), 4 g{}\left(1\right)+3 g{}\left(9\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}3 & 6 & 7 & 8\\ 1 & 0 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-5\right)+g{}\left(-6\right)+g{}\left(-10\right), 3 g{}\left(5\right)+3 g{}\left(6\right)+4 g{}\left(10\right), g{}\left(-1\right)+g{}\left(-3\right), g{}\left(1\right)+g{}\left(3\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 6 & 6\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-12\right)+g{}\left(-6\right), 4 g{}\left(1\right)+3 g{}\left(12\right)+3 g{}\left(6\right), -g{}\left(-3\right)+g{}\left(-10\right), -g{}\left(3\right)+g{}\left(10\right)\right)), (DynkinType=A^{11}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 7 & 8\\ 0 & 0 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-9\right)+g{}\left(-10\right), 4 g{}\left(1\right)+3 g{}\left(9\right)+g{}\left(10\right), g{}\left(-3\right), g{}\left(3\right)\right)), (DynkinType=A^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right)\right)), (DynkinType=B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ -1 & -2 & -1 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(8\right)+g{}\left(2\right), g{}\left(-8\right)+g{}\left(-2\right)\right)), (DynkinType=B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -2 & -2 & -2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(9\right), g{}\left(-9\right)\right)), (DynkinType=G^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 3 & 4 & 4\\ -1 & -1 & -2 & -2 \end{pmatrix};generators=\left(g{}\left(-14\right)+g{}\left(-11\right), g{}\left(14\right)+g{}\left(11\right), g{}\left(15\right), g{}\left(-15\right)\right)), (DynkinType=A^{3}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 3 & 4 & 4\\ -1 & 0 & -2 & -2 \end{pmatrix};generators=\left(g{}\left(-8\right)+g{}\left(-14\right)+g{}\left(-13\right), g{}\left(8\right)+g{}\left(14\right)+g{}\left(13\right), g{}\left(1\right)+g{}\left(7\right)-g{}\left(3\right), -g{}\left(-10\right)+g{}\left(-7\right)+g{}\left(-1\right)\right)), (DynkinType=3 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & 0 & 1 & 2\\ 0 & 0 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-3\right), g{}\left(3\right)\right)), (DynkinType=A^{2}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 3 & 4\\ 1 & 1 & 1 & 0\\ 0 & 1 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-13\right)+g{}\left(-14\right), g{}\left(13\right)+g{}\left(14\right), g{}\left(-8\right), g{}\left(8\right), g{}\left(-2\right), g{}\left(2\right)\right)), (DynkinType=A^{2}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2\\ 0 & 1 & 2 & 2\\ 0 & 1 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-11\right), g{}\left(11\right), g{}\left(-14\right), g{}\left(14\right), g{}\left(-2\right), g{}\left(2\right)\right)), (DynkinType=3 A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2\\ 0 & 2 & 2 & 2\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-13\right)+g{}\left(-8\right), g{}\left(13\right)+g{}\left(8\right), g{}\left(-12\right)-g{}\left(-6\right), g{}\left(12\right)-g{}\left(6\right), g{}\left(-7\right), g{}\left(7\right)\right)), (DynkinType=A^{10}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 6 & 6 & 6\\ 0 & 0 & 1 & 2\\ 0 & 0 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-9\right), 4 g{}\left(1\right)+3 g{}\left(9\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-3\right), g{}\left(3\right)\right)), (DynkinType=A^{1}{}\left(2\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ 0 & 0 & 0 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -2 & -2 & -2\\ 0 & 0 & 1 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(9\right), g{}\left(-9\right), g{}\left(-10\right), g{}\left(10\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -2 & -2 & -2\\ 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(6\right)+g{}\left(12\right), g{}\left(-6\right)+g{}\left(-12\right), -g{}\left(-3\right)+g{}\left(-10\right), -g{}\left(3\right)+g{}\left(10\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ -1 & -2 & -1 & 0\\ 1 & 0 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(6\right)+g{}\left(5\right), g{}\left(-6\right)+g{}\left(-5\right), g{}\left(-1\right)+g{}\left(-3\right), g{}\left(1\right)+g{}\left(3\right)\right)), (DynkinType=A^{1}{}\left(3\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ -1 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(1\right), g{}\left(-1\right)\right)), (DynkinType=A^{1}{}\left(3\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right)\right)), (DynkinType=B^{1}{}\left(3\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ 0 & 0 & -2 & -2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(7\right), g{}\left(-7\right)\right)), (DynkinType=B^{1}{}\left(3\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ -1 & 0 & -1 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right)+g{}\left(1\right), g{}\left(-3\right)+g{}\left(-1\right)\right)), (DynkinType=4 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & 0 & 1 & 2\\ 0 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-3\right), g{}\left(3\right), g{}\left(-1\right), g{}\left(1\right)\right)), (DynkinType=B^{1}{}\left(2\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -2 & -2 & -2\\ 0 & 0 & 1 & 2\\ 0 & 0 & 1 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(9\right), g{}\left(-9\right), g{}\left(-10\right), g{}\left(10\right), g{}\left(-3\right), g{}\left(3\right)\right)), (DynkinType=A^{1}{}\left(3\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-4\right), g{}\left(4\right)\right)), (DynkinType=D^{1}{}\left(4\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ -1 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(1\right), g{}\left(-1\right)\right)), (DynkinType=B^{1}{}\left(4\right);ElementsCartan=\begin{pmatrix}1 & 2 & 2 & 2\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -2 \end{pmatrix};generators=\left(g{}\left(-16\right), g{}\left(16\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(4\right), g{}\left(-4\right)\right))\right))